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Abstract
Thermal conductivity of superconducting MgB2 was studied in both the
superconducting and the normal state region. The latter is almost equally
determined by the electronic and the lattice contribution to the total thermal
conductivity. In the superconducting state, however, the lattice contribution
is larger. The electronic thermal conductivity below Tc was derived from
the experimental data considering the Bardeen–Rickayzen–Tewordt theory
together with the model of Geilikman. The analysis shows that electron
scattering on static imperfections dominates.

1. Introduction

Superconductivity with a remarkably high transition temperature Tc ≈ 39 K was recently
discovered in MgB2 [1]. The subsequent investigation of the boron isotope effect by
Bud’ko et al [2] revealed a partial isotope exponent αB ≈ 0.26 (corresponding to �Tc = 1 K)
which appears to be consistent with a phonon-mediated BCS superconducting (SC) mechanism.
Also other experimental reports as e.g. on specific heat [3, 4] argued that their data can be
accounted for by a conventional, s-wave type BCS-model. Investigations of the SC gap of
MgB2 by means of Raman scattering are also consistent with an isotropic s-wave gap with
a moderate coupling 2� ≈ 4.1kBTc [5]. However, a theoretical analysis of the temperature
dependence of the upper critical field Hc2(T ) in terms of Eliashberg type models by Shulga
et al [6] demonstrates that the shape and the magnitude of the upper critical field of MgB2

can definitely not be accounted for by an isotropic single-band model, but may successfully be
described within a multi-band Eliashberg model with various options. A careful calorimetric
investigation of the SC parameters of MgB2 by Wang et al [7] gave even more direct evidence
against the arguments for simple isotropic BCS type superconductivity: ‘The nearly quadratic
dependence of C(T ) versus T at T � Tc, its non-linear field dependence, and the discrepancy
between the electron–phonon coupling constant λep as determined by the renormalization
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of the electron density of states (λep ∼ 0.6) and by McMillan’s equation for isotropic
superconductors (λep ∼ 1.1), are inconsistent with a single isotropic gap’. Direct hints for a
non-BCS temperature dependence of the gap energy �(T ) were also obtained by tunnelling
experiments on MgB2/Ag and MgB2/In junctions [8].

Thermal conductivity λ is one of those transport coefficients which exhibits non-zero
values in both the normal and the SC state. The temperature dependence of λ allows us to
distinguish between the most important interactions present in a superconductor. In particular,
the interactions of electrons with phonons are recorded in the magnitude of λ(T ). Moreover,
scattering of these particles by static imperfections like impurities, defects or grain boundaries
are reflected.

The aim of the present work is to derive the temperature dependent thermal conductivity of
MgB2 and to analyse the data with respect to the electronic and the lattice thermal conductivity
both in the normal and the SC state. Moreover, we present resistivity and specific heat
measurements in order to characterize the investigated sample.

2. Experimental details

A MgB2 sample of about 1.3 g was synthesized by direct reaction of the elements. The starting
materials were elemental magnesium (rod 99.9 mass % nominal purity) and boron (99.5 %
powder, crystalline, < 60 mesh, 99.5 mass %). The elements in a stoichiometric ratio were
enclosed in a cylindric tantalum crucible sealed by arc welding under argon atmosphere. The
tantalum crucible was then sealed in an iron cylinder and heated for one hour at 800 ◦C and
two hours at 950 ◦C in a furnace. The sample characterized by x-ray diffraction show pure
MgB2 phase; only one very weak peak due to an extra phase has been found.

The thermal conductivity measurement was performed in a flow cryostat on a cuboid-
shaped sample (length: about 1 cm, cross-section: about 2.5 mm2), which was kept cold by
anchoring one end of the sample onto a thick copper panel mounted on the heat exchanger of the
cryostat. The temperature difference along the sample, established by electrical heating, was
determined by means of a differential thermocouple (Au + 0.07 % Fe/Chromel). The measure-
ment was performed under high vacuum and three shields mounted around the sample reduced
the heat losses due to radiation at finite temperatures. The innermost of these shields is kept on
the temperature of the sample via an extra heater maintained by a second temperature controller.

Resistivity data were taken from bar shaped samples applying a standard 4-probe d.c.
technique at temperatures down to 0.5 K and in magnetic fields up to 12 T.

Specific heat measurements were carried out on a sample of about 1 g in the temperature
range 5–50 K using a quasi-adiabatic step heating technique.

3. Results and discussion

In order to give direct proof of the SC bulk properties of our MgB2 sample prior to the transport
measurements we checked the specific heat. These specific heat measurements performed in
zero-field, 1 and 9 T showed reasonable agreement with results previously reported [3,4,7]. The
thermodynamic mean transition temperature Tc of our sample is 37.5 K. As already noted in the
introduction there have been distinctly different and partly controversial conclusions suggested
in [3,4,7], although their raw data are in fair agreement with each other. Therefore, we show in
figure 1 the temperature dependence of the electronic specific heat, Cel(T ) versus T , obtained
by subtracting the lattice heat capacity deduced from the 9 T specific heat data. Of course, 9 T
are insufficient to obtain a complete suppression of superconductivity in MgB2, but there is
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already a large reduction of the order parameter combined with a dramatic broadening of the
transition (see [7] for comparison of 10, 14 and 15 T data). Thus, we obtained a Sommerfeld
coefficient of the normal-state electronic specific heatγ � 2.4(2) mJ mol−1 K2 by extrapolating
the 9 T data in C/T versus T 2 from 30–100 K2 to zero temperature which is already close to
γ = 2.7 ± 0.15 mJ mol−1 K2 obtained from the 14 and 16 T measurement by Wang et al [7].
The important point to emphasize in figure 1 is the non-BCS-like temperature dependence of
the SC-state electronic specific heat. In fact, we observed a similar deviation from a simple BCS
temperature dependence (solid line, figure 1) as previously reported by Wang et al [7] (CBCS

el =
8.5γ Tc exp[−0.82�(0)/kBT ] for T < 0.4Tc). This discrepancy is supposed to be indicative
for the opening of an additional gap below about 10 K. The solid line in figure 1 indicates that
a fraction of electrons corresponding to a normal state γ ∼ 1.4 mJ mol−1 K2 is tentatively
accounted for by the BCS-fit with �(0)/kBTc � 1.9 while a second fraction corresponding to
γ ∼ 1.0 mJ mol−1 K2 contributes to the smaller gap opening at temperatures well below Tc/2.
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Figure 1. The electronic specific heat of MgB2, Cel(T )/T versus T obtained by subtracting the
lattice contribution, Clat = C9T − γ T , where γ � 2.4 mJ/mol K2. The full line indicates a BCS
temperature dependence of Cel as explained in the text.

To further screen the quality of the sample, temperature and magnetic field dependent
resistivity measurements ρ(T ,H)were performed from 0.5 K up to room temperature. Shown
in figure 2 (right axis) is ρ(T ) at zero field. The transition into the SC state occurs at
Tc = 38.9 K, which is in fine agreement with already published data. The RRR ratio of this
polycrystalline sample is about 6. The resistivity behaviour in the normal state region matches
a dependence according to ρ(T ) = ρ0 + AT 2 with the residual resistivity ρ0 = 12.5 µ�cm
and the coefficient A = 9 × 10−4 µ�cm. A T 2 behaviour of ρ(T ) was recently reported [9]
and it seems to reflect interactions between charge carriers. A study of the Hall coefficient
implies that electrical transport is dominated by holes [10]. The value of the coefficient A,
however, is significantly smaller than that known e.g., for highly correlated electron systems,
but seems to reflect the modest density of states at Fermi energy [11]. It should be mentioned
that other power laws with an exponent close to three were reported for sintered material of
MgB2 [12,13]. Measurements of the resistivity down to 0.5 K and in fields up to 12 T indicate
that Hc2 is well above that limit. Interestingly, the transition region becomes much broader
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Figure 2. Temperature dependent thermal conductivity λ(T ) (left axis), and electrical resisitivity
ρ(T ) (right axis) of MgB2. The dashed and the dashed-dotted lines are the electronic - and the
lattice contributions λe and λl , respectively.

with increasing fields, but different values of imprinted currents (from 5 to 40 mA) do not
change the width of the transition.

The temperature dependent thermal conductivity λ of MgB2 is shown in figure 2. The
overall behaviour of λ(T ) is typical of an intermetallic compound where scattering on static
imperfections prohibits a pronounced maximum occuring, as is the case in pure and simple
metals. Moreover, the absolute magnitude appears to be of the order usually found for
intermetallics. Anomalous behaviour of λ(T ) in the proximity of Tc is not observed and a
local maximum or a pronounced shoulder below Tc do not occur in the investigated sample.

Generally, the total thermal conductivity of metals consists of a sum of an electronic
contribution λe and a lattice contribution λl :

λ = λe + λl. (1)

In order to separate both contributions from the total measured effect, the Wiedemann–Franz
law is applied, assumed to be valid, at least, in simple metals. This model relates the elec-
trical resistivity ρ with the electronic contribution to the thermal conductivity λe and can be
expressed as

λe(T ) = L0T

ρ(T )
(2)

where L0 = 2.45 × 10−8 W�K−2 is the Lorenz number.
Using equation 1 and taking into account the appropriate values of the electrical resistivity

in the normal state region of MgB2 (compare figure 2, right axis) allows to splitλ intoλe (dashed
line, figure 2) andλl (dashed-dotted line, figure 2). This type of analysis indicates that both con-
tributions are almost equal in the entire temperature range of the normal state region of MgB2.

According to Matthiessen’s rule both λe and λl are limited owing to various scattering
processes, which can be expressed in terms of a thermal resistivity W . In the case of non-
magnetic materials, the following temperature dependence of the electronic contribution to the
total measured quantity is assumed to be valid [14]:

1/λe(T ) ≡ We(T ) = We,0(T ) + We,ph(T ) = α

T
+ βT 2 (3)
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where the subscripts (e, 0) and (e, ph) refer to interactions of the conduction electrons
with static imperfections and thermally excited phonons, respectively; α and β are material
constants.

Equation (3) allows us to determine We,0 and We,ph. Shown in figure 3 is the electronic
thermal resistivity We of MgB2 displayed in the normal state region up to about 80 K. The
solid line is a least squares fit of the data according to equation (3) and the dashed and the
dashed-dotted lines represent We,0 and We,ph, respectively. Thus, the deduced parameters
are α = 0.55 cmK2 mW−1 and β = 2.8 × 10−7 cm mW−1 K−1. Obviously from figure 3,
the scattering of electrons with static imperfections of the crystal becomes dominant as the
temperature approaches Tc.
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Figure 3. Temperature dependent electronic thermal resistivityWe(T ) of MgB2 in the normal state
region. The dashed and the dashed-dotted lines are the contributions due to electron-imperfection
and electron–phonon scattering We,0 and We,ph, respectively.

The relative weight of λe and λl at the SC transition temperature Tc, as defined from
the Wiedemann–Franz law, also serves to determine the temperature dependence of λe and
subsequently of λl below Tc. Since within the BCS theory, Cooper pairs do not carry heat and
entropy, the scattering terms of equation (3) have to be modified in order to account for the
decreasing number of unpaired electrons.

In the SC state, the thermal resistivity Ws
e can be represented as

Ws
e ≡ 1/λse = Ws

e,0 + Ws
e,ph = α

Tf (t)
+
βT 2

g(t)
(4)

with t = T/Tc [15]. The functions f (t) and g(t) were calculated repeatedly and agree well
with experimental findings [15–17]. In the dirty limit of a superconductor, the first term
of equation (4) dominates, i.e., 1/λse ≡ Ws

e ≈ Ws
e,0. In terms of the Bardeen–Rickayzen–

Tewordt (BRT) theory [16] λse(t)/λ
n
e is a universal function of t , dependent on the value and

the temperature dependence of the SC gap �.
On the contrary, clean limit superconductors are dominated by the second term of

equation (4), revealing 1/λse ≡ Ws
e ≈ Ws

e,ph. Geilikman et al [15] have calculated and
tabulated g(t) which yields again a universal behaviour on t . Differently to scattering on
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imperfections, λse(t)/λ
n
e (T = Tc) in the BCS limit increases initially with decreasing values

of t in spite of a rapid decrease of electronic excitations. A maximum occurs at t ≈ 0.28
with λse(t = 0.28)/λne (T = Tc) = 2.44. Various high-temperature superconductors are found
to exhibit a maximum in λ(T ) below Tc and thus the origin of that feature is, at least partly,
attributed to a significant scattering strength of electrons on thermally excited lattice vibrations
(compare e.g. [18]).

Figure 3 evidences that slighty above Tc, We,0 exceeds We,ph by more than one order of
magnitude and contributes at this temperature about 95 % to We. The significantly lower value
ofWe,ph is obviously a consequence of the extremely high Debye temperature#D ≈ 900 K [7].
This implicitely favours a description of the thermal conductivity of MgB2 based on scattering
of electrons on impurities. Nevertheless, for the present analysis of the data both terms of
equation (4) are considered in order to analyse the electronic contribution to the total thermal
conductivity. Taking into account the functions f (t) and g(t) and the numerical values ofα and
β allows us to determineλse belowTc (compare figure 4, panel (a)). λse decreases with decreasing
temperature and is primarily determined by the BRT function f (t). The difference λ − λse
represents the phonon-originated thermal conductivity λsl in the SC state. The latter appears to
be larger in the SC state than λse. For temperatures T/Tc < 0.4, the lattice thermal conductivity
of MgB2 becomes dominant. This nicely agrees with theoretical considerations [15]. The
lattice term λsl is constrained by various scattering processes; among them are interactions of
the phonons with electrons, point defects, dislocations or sheetlike faults.
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Figure 4. (a): Temperature dependent thermal conductivity λ(T ) of MgB2 in the SC state. The
solid and the dashed-dotted lines represent electron and lattice contributions λse and λsl , derived
from the BCS and the modified model as discussed in the text, respectively. (b): Temperature
dependent electronic thermal resistivity, Ws

e (T ) of MgB2 in the SC state derived from the BCS
model. The dashed and the dashed-dotted lines are the contributions due to electron-imperfection
and electron–phonon scattering Ws

e,0 and Ws
e,ph, respectively.

To account for observed deviations of the SC gap of MgB2 from the BCS theory, the
experimental data from tunnel experiments on MgB2/Ag and MgB2/In [8] have been used to
modify the function f (t) and thus Ws

e,0. The smaller the value of �(T ) with respect to the
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BCS theory, the less steep is the decrease of f (t) when the temperature is lowered. Since
�(0) of MgB2 as obtained from that study (2�(0)/kBTc ≈ 2.4, [8]) is well below the BCS
value (2�(0)/kBTc = 3.5), λse, in this type of analysis, becomes larger in the SC state down to
T/Tc ≈ 0.2. Still, λsl > λse. Taking λsl as derived from the BCS-like gap, however, provides a
slightly smoother crossover from the SC to the normal state region of MgB2.

Panel (b) of figure 4 shows the temperature dependent thermal resistivity Ws
e ≡ 1/λse.

Here, the data derived from the BCS model are used. Obviously, scattering of electrons by
phonons in the SC state contributes just a fraction to the thermal resistivity Ws

e , and therefore
Ws

e,0 is the most significant term below Tc. This, of course, will not change if the actual
dependence of �(T ) is considered.

4. Summary

Thermal conductivity, resistivity and specific heat measurements were carried out on MgB2.

The application of the Wiedemann–Franz law to the experimental data indicates that both the
electronic and the lattice contribution to the total thermal conductivity are of similar size over
a large temperature range. Thermal conductivity does not evidence a pronounced anomaly
around Tc and furthermore, no local maximum occurs at temperatures well below Tc. Such
a behaviour is most likely caused by the dominance of electron (hole) scattering on static
imperfections present in the investigated MgB2 sample. Note, the high value of the Debye
temperature #D implies a low scattering rate of electronic heat carriers by phonons in the low
temperature region. The analysis based on the BRT model and the model of Geilikman further
evidences the predominance of Ws

e,0. Beside the classical BCS behaviour of the SC gap, an
attempt was made to incorporate the actual gap behaviour reported for MgB2 [8] revealing a
larger electronic contribution than in the standard BCS scenario.

This work is supported by the Austrian FWF P12899 and P13778.
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